March 21

Flashlight

Globe

Flashlight

Apparent Diameter of the Sun During the Year

Date	Apparent Diameter (' = minutes " = seconds)
January 1	32'32"
February 10	32'25"
March 20	32'07"
April 20	$31^{\prime} 50$ "
May 30	31 '33"
June 30	$3128{ }^{\prime \prime}$
August 10	$31^{\prime} 34{ }^{\prime \prime}$
September 20	$31^{\prime \prime} 1^{\prime \prime}$
November 10	32'18"
December 30	32'32"

Duration of Daylight Hours
Throughout the Year at Various Locations

Observer	Duration of Insolation March 21	Duration of Insolation June 21
W	12 hr	0 hr
X	12 hr	12 hr
Y	12 hr	18 hr
Z	12 hr	24 hr

Diagram 1

6 p.m.

Direction of rotation

Diagram 2

March 21

Direction of rotation

Point X

Direction of rotation

(Not drawn to scale)

North

Data Table

Date	Hours of Daylight	Altitude of the Sun at Noon $\left({ }^{\circ}\right)$
January 21	9.5	32.3
February 21	10.8	40.1
March 21	12.0	47.3
April 21	13.7	55.1
May 21	14.8	62.5
June 21	15.3	70.4
July 21	14.8	63.3
August 21	13.7	55.5
September 21	12.1	47.7
October 21	10.8	39.9
November 21	9.5	32.1
December 21	9.0	24.4

Data Table

City	Latitude $\left({ }^{\circ} \mathrm{N}\right)$	Duration of Daylight (hr)
Panama City, Panama	9	11.6
Mexico City, Mexico	19	11.0
Tampa, Florida	28	10.4
Memphis, Tennessee	35	9.8
Winnipeg, Canada	50	8.1
Churchill, Canada	65	3.7
Fairbanks, Alaska	5.3	

Intensity of Insolation

Latitude	Day 1 Duration of Insolation (hours)	Day 2 Duration of Insolation (hours)	Day 3 Duration of Insolation (hours)
$90^{\circ} \mathrm{N}$	24	12	0
$80^{\circ} \mathrm{N}$	24	12	0
$70^{\circ} \mathrm{N}$	24	12	0
$60^{\circ} \mathrm{N}$	$18 \frac{1}{2}$	12	$5 \frac{1}{2}$
$50^{\circ} \mathrm{N}$	$16 \frac{1}{4}$	12	$12 \frac{3}{4}$
$40^{\circ} \mathrm{N}$	14	12	9
$30^{\circ} \mathrm{N}$	$13 \frac{1}{4}$	$12 \frac{1}{2}$	12
$20^{\circ} \mathrm{N}$	12	12	$10 \frac{3}{4}$
$10^{\circ} \mathrm{N}$	0°	N	$11 \frac{1}{2}$

\square
2d

Sun's

actual

Sun's

Sun's
apparent position

Location A

Location C

Location B

B

(Not drawn to scale)

(Not drawn to scale)

(Not drawn to scale)

Position D

Position B

Diagram I

Earth on May 1

Northeast

Data Table

Latitude	Azimuths of Sunrise and Sunset	Letter Code
$30^{\circ} \mathrm{N}$	sunrise 69°	A
	sunset 291°	B
$40^{\circ} \mathrm{N}$	sunrise 66°	C
	sunset 294°	D
$50^{\circ} \mathrm{N}$	sunrise 61°	E
	sunset 299°	F
$60^{\circ} \mathrm{N}$	sunrise 51°	G
	sunset 309°	H

Shadow Cast on March 21

Sun's present

Sun's apparent path
 Apparent position of Polaris

East

Sunrise
Noon

$\mathrm{N}=-$ Observer \mathbf{N}_{1}^{\prime}

N Pole

N Pole

N Pole

nun

Sun's direct \longrightarrow rays

Earth

(Not drawn to scale)

